

Doc. Number:

□Tentative Specification

Preliminary Specification

Approval Specification

MODEL NO: DJ123IA SUFFIX: 01B

Customer:						
APPROVED BY	SIGNATURE					
<u>Name / Title</u> Note :						
Please return 1 copy for you your signature and commer						

Approved By	Checked By	Prepared By
Henry.Chien	Annie.Lu	Henry.Hsiung

REVISION HISTORY

May, 11, 2016	1 5 12 17	Spec Ver.0.0 was first issued. Page 1: Revise General Specifications; Page 5: Revise Backlight Driving Conditions; Page 13: Revise Optical Specifications; Page 17: Reliability Test Items; Page 20: Mechanical Drawing;
May, 11, 2016		Revise Optical Specifications; Page 17: Reliability Test Items; Page 20: Mechanical Drawing;
Aug., 15, 2016		Page 22: add Packing Drawing
	1, 4, 5, 6, 7, 10, 13	Page1: Revise General Specifications; Page4: Absolute Maximum Rating; Page5: Typical Operation Conditions; Backlight Driving Conditions; Page6: PWM; Page7: Power Sequence; Page10: Timing; Page13: Revise Optical Specifications
Oct., 5, 2016	1, 5, 7, 13, 21, 22, 24, 25	Page1: General Specifications Page5: Typical Operation Conditions Page7: Power Sequence Page13: Optical Specifications Page21, 22: Mechanical Drawing Page24, 25: Packaging drawing and shipping drawing
	1, 4, 5, 6, 12, 17, 20	Page1: General Specifications Page4: Absolute Maximum Rating Page5: Typical Operation Conditions & Backlight Driving Conditions Page6: Thermal Simulation Page12: Reset timing Page17: Reliability Test Items Page20: Mechanical Drawing
Dec.02.2016	1,2,	Page1: General Specifications
Jun.15.2017	1,5,6	Page 2: Connector Type Page1: General Specifications Page5: Typical Operation Conditions Page6: Backlight Driving Conditions
	Oct., 5, 2016 Oct., 19, 2016 Dec.02.2016	Oct., 5, 2016 1, 5, 7, 13, 21, 22, 24, 25 Dct., 19, 2016 1, 4, 5, 6, 12, 17, 20 Dec.02.2016 1,2,

Contents

1	General Specifications	1
2	Pin Assignment	2
3	Operation Specifications	4
	3.1 Absolute Maximum Rating	4
	3.1.1 Typical Operation Conditions	5
	3.1.2 Backlight Driving Conditions	6
	3.1.3 PWM	6
	3.2 Power Sequence	7
	3.2.1 Power On	7
	3.2.2 Power Off	7
	3.3 Timing Characteristics	8
	3.3.1 AC Electrical Characteristics	8
	3.3.2 Input Clock and Data Timing Diagram	8
	3.3.3 DC Electrical Characteristics	.10
	3.3.4 Timing	.10
	3.3.5 Data Input Format	11
	3.3.6 Reset Timing	.12
4	Optical Specifications	.13
5	Reliability Test Items	.17
6	General Precautions	.19
	6.1 Safety	19
	6.2 Handling	19
	6.3 Static Electricity	.19
	6.4 Storage	19
	6.5 Cleaning	19
7	Mechanical Drawing	.20
8	Package Drawing	.21
	8.1 Packaging Material Table	.21
	8.2 Packaging Quantity	.21
	8.3 Packaging Drawing	.22
	8.4 Shipping Drawing	.23

1. General Specifications

No.	Item	Specification	Remark
1	LCD Size	12.3 inch (Diagonal)	
2	Driver Element	a-Si TFT Active Matrix	
3	Resolution	1920 X 3(RGB) X 720	
4	Display Mode	Normally Black, Transmissive	
5	Dot Pitch	0.0508 x 0.1524	
6	Active Area 292.608(W) X 109.728(H) mm		
7	Module Size	310(W) X 129.1(H) X 7.5(D) mm	Note 1
8	Bezel Opening Size	295.61(W) X 112.73(H) mm	
9	Surface Treatment	Anti-Glare	
10	Color Arrangement	RGB-Stripe	
11	Interface	2 Port LVDS(DE Only)	
12	Backlight Power Consumption	8.2W(TYP.)	
13	Panel Power Consumption	0.86W(TYP.)	
14	Weight	463g (MAX.)	
15	NTSC	85%	

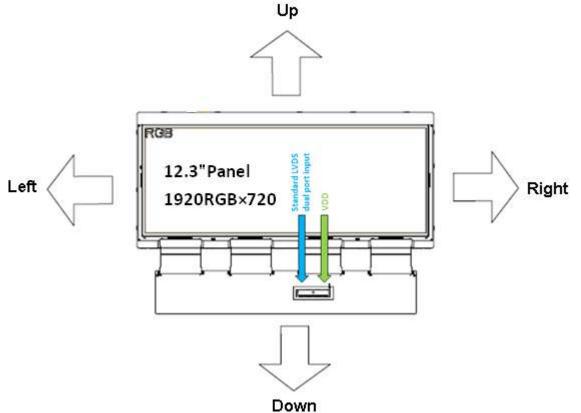
Note 1: Refer to Mechanical Drawing.

2. Pin Assignment

Connector on PCB is used for the module electronics interface. The recommended model is 12003S-50Y900 manufactured by IRISO.

Connector type : IRISO 12003S-50Y900								
Pin	Input signal name	l/Opin (l:input, O:output, P:power)	Typical voltage (Volt)		description			
1	GND	Р	0.00 V	power supply	Ground			
2	VDD	Р	3.3 V	power supply	External main and I/O power supply ; Power3V3			
3	VDD	Р	3.3 V	power supply	External main and I/O power supply : Power3V3			
4	VDD	Р	3.3 V	power supply	External main and I/O power supply ; Power3V3			
5	RESET	I	3.3V or 0V	Function	Global reset pin (Default high), active low.			
6	STBYB	Ι	3.3V or 0V	Function	Standby mode setting pin (Default high), active low.			
7	GND	Р	0.00 V	power supply	Ground			
8	OLV0N			LVDS signal	LVDS odd data 0-			
9	OLV0P	I		LVDS signal	LVDS odd data 0+			
10	GND	Р	0.00 V	power supply	Ground			
11	OLV1N			LVDS signal	LVDS odd data 1-			
12	OLV1P	I		LVDS signal	LVDS odd data 1+			
13	GND	Р	0.00 V	power supply	Ground			
14	OLV2N	l		LVDS signal	LVDS odd data 2-			
15	OLV2P			LVDS signal	LVDS odd data 2+			
16	GND	Р	0.00 V	power supply	Ground			
17	OLVCLKN			LVDS signal	LVDS odd clk -			
18	OLVCLKP	I		LVDS signal	LVDS odd clk +			
19	GND	Р	0.00 V	power supply	Ground			
20	OLV3N	I		LVDS signal	LVDS odd data 3-			
21	OLV3P	I		LVDS signal	LVDS odd data 3+			
22	GND	Р	0.00 V	power supply	Ground			
23	ELVON	I		LVDS signal	LVDS even data 0-			
24	ELV0P	I		LVDS signal	LVDS even data 0+			
25	GND	Р	0.00 V	power supply	Ground			
26	ELV1N	I		LVDS signal	LVDS even data 1-			
27	ELV1P	I		LVDS signal	LVDS even data 1+			
28	GND	Р	0.00 V	power supply	Ground			
29	ELV2N	I		LVDS signal	LVDS even data 2-			
30	ELV2P	I		LVDS signal	LVDS even data 2+			
31	GND	Р	0.00 V	power supply	Ground			
32	ELVCLKN			LVDS signal	LVDS even clk -			
33	ELVCLKP	I		LVDS signal	LVDS even clk +			
34	GND	Р	0.00 V	power supply	Ground			
35	ELV3N	I		LVDS signal	LVDS even data 3-			
36	ELV3P	I		LVDS signal	LVDS even data 3+			
37	GND	 P	0.00 V	power supply	Ground			
38	GND	P	0.00 V	power supply	Ground			

39	RL	I	3.3V or 0V	Function	Horizontal shift direction (source output) selection. RL = 1: Left -> Right(default: Customer to Pull high, internal IC Pull high*) RL = 0: Right -> Left
40	ТВ	I	3.3V or 0V	Function	Vertical shift direction (gate output) selection. TB = 0: Bottom->Top TB = 1: Top ->Bottom (default: Customer to Pull high, internal IC Pull high*)
41	VDD	Р	3.3 V	power supply	External main and I/O power supply ; Power3V3
42	GND	I	0.00 V	power supply	LCD Maker Internal Use
43	GND	I	0.00 V	power supply	LCD Maker Internal Use
44	VDD	Р	3.3 V	power supply	External main and I/O power supply ; Power3V3
45	NC				Keep floating
46	NC				Keep floating
47	NC				Keep floating
48	NC				Keep floating
49	NC				Keep floating
50	NC				Keep floating


The recommended model of FPC Connector is 12001S-10Y901 manufactured by IRISO

	Connector type : IRISO IMSA-12001S-10Y901								
PIN No.	Symbol	I/O	Function						
1	PLED	Power	LED anode power supply						
2	PLED	Power	LED anode power supply						
3	PLED	Power	LED anode power supply						
4	NC								
5	NTC1		heat sensor						
6	NTC2(GND)		heat sensor						
7	NLED	Power	LED cathode power supply						
8	NLED	Power	LED cathode power supply						
9	NLED	Power	LED cathode power supply						
10	NLED	Power	LED cathode power supply						

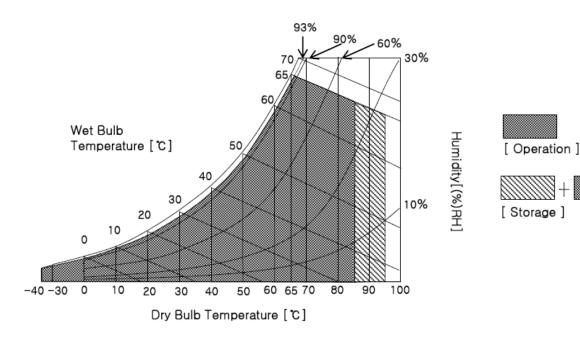
Note: Definition of scanning direction. Refer to the figure as below:

3. Operation Specifications

3.1. Absolute Maximum Rating

(GND=0V, Note 1)

		Val	ues	, , , , , , , , , , , , , , , , , , ,	D_00, Note 1)
Item	Symbol	Min.	Max.	Unit	Remark
Power Voltage	V _{DD}	-0.3	(3.96)	V	Note 1
Operation Temperature	Т _{ор}	-30	85	°C	Note2, 3, 4
Storage Temperature	Τ _{st}	-40	90	°C	Note2, 3


Note 1 : The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed.

INNOLUX 群創光電

Note 2 : This rating applies to all parts of the module and should not be exceeded.

Note 3 : Maximum wet-bulb temperature is 58 °C. Condensation of dew must be avoided as electrical current leaks will occur, causing a degradation of performance specifications.

Note 4 : The operating temperature only guarantees operation of the LCM and doesn't guarantee all the contents of Electro-optical specification.

3.1.1 Typical Operation Conditions

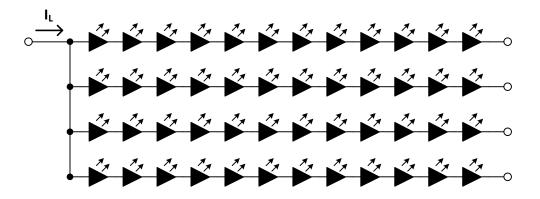
					-	(GND =0V)	
	Symbol		Values				
ltem	Symbol	Min.	Тур.	Max.	Unit	Remark	
Power voltage	V _{DD}	3.1	3.3	3.6	v	Note 1,2	
Power Supply Input Current	I _{DD}	210	260	310	mA	Note 3	
Input logic high voltage	V _{IH}	0.7 V _{DD}	-	V _{DD}	v	Noto 4	
Input logic low voltage	V _{IL}	GND	-	0.3 V _{DD}	v	Note 4	
Pull low / high resistor	RI	125	250	375	kΩ	For I/O circuit	

Note 1: V_{DD} setting should match the signals output voltage of customer's system board.

Note 2: The ripple voltage should be controlled under 5% of VDD

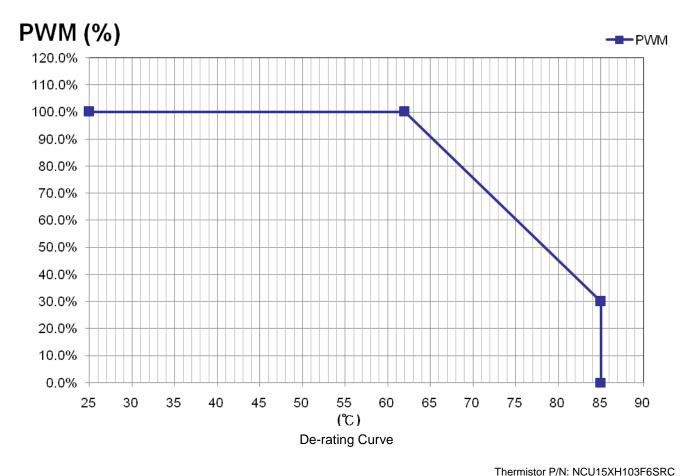
Note 3: Full white pattern.

Note 4: RESET, STBYB, RL, TB



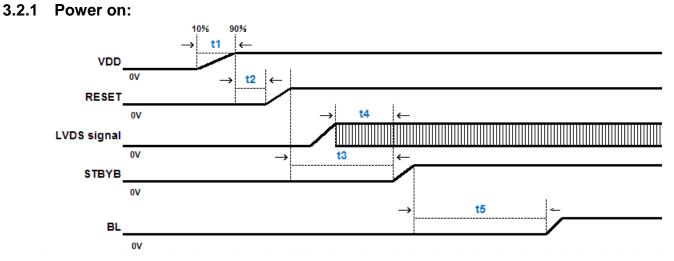
3.1.2 Backlight Driving Conditions

ltom	Symbol		Values	Unit	Domork	
ltem	Symbol	Min.	Тур.	Max.	Unit	Remark
Voltage for LED Backlight	VL	33.6	37.2	39.6	v	Note 1
Current for LED Backlight	١L		220		mA	
LED Life Time	-	30000			Hr	Note 2


Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25 $^\circ\!\!{\rm C}$ and I_F =150mA.

- Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and
 - I_L = 220mA. The LED lifetime could be decreased if operating I_L is lager than 220 mA.

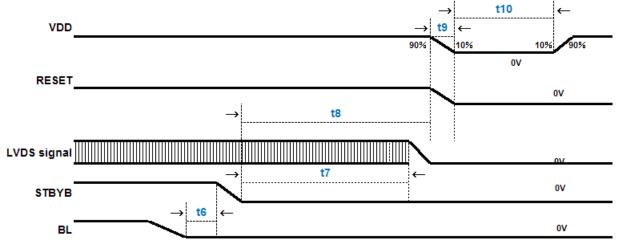
3.1.3 PWM



Thermal Simulation

1. After several condition comparison, we will use the LED with metalcore PCB + Heat-sink for this case.

- 2. 48pcs LEDs with total 8.2W
- 3. The optical film will be the first to reach the material limit.
- 4. By simulation result, we need to start to de-rating the BLU from 62 degree C to protect the material safe.


3.2. Power Sequence

VDD = 3.0~3.6V

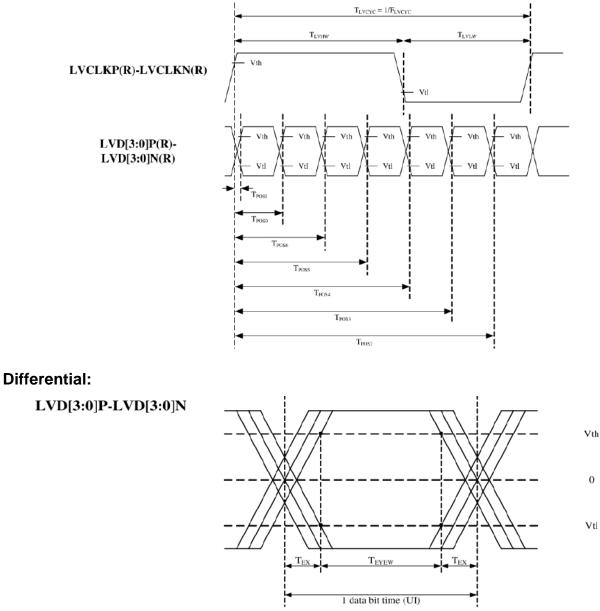
3.2.2 Power off:

Symbol		l lm:4		
Symbol	Min.	Тур.	Max.	Unit
t1	1.5	2	3	ms
t2	1.0	5	10	ms
t3	0	30	50	ms
t4	0	5	10	ms
t5	10	12	15	frame
t6	0	25	50	ms
t7	7	9	10	frame
t8	8	10	11	frame
t9	0	1	3	ms
t10	1000	2000	3000	ms

3.3. Timing Characteristics

3.3.1. AC Electrical Characteristics

Parameter	Symbol	Spec.			l lmit	Demerik	
	Symbol	Min.	Тур.	Max.	Unit	Remark	
Clock frequency	FLVCYC	20	-	85	MHz	Frame rate=60Hz	
Clock Period	TLVCYC	11.76	-	50	Nsec	Frame rate=60Hz	
1 data bit time	UI	-	1/7	-	TLVCYC		
Position 1	TPOS1	-0.2	0	0.2	UI		
Position 0	TPOS0	0.8	1	1.2	UI		
Position 6	TPOS6	1.8	2	2.2	UI	Natao	
Position 5	TPOS5	2.8	3	3.2	UI	Note9	
Position 4	TPOS4	3.8	4	4.2	UI]	
Position 3	TPOS3	4.8	5	5.2	UI		

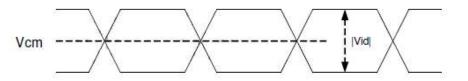


Position 2	TPOS2	5.8	6	6.2	UI
Input eye width	TEYEW	0.6	-	-	UI
Input eye border	TEX	-	-	0.2	UI
LVDS wake up time	TENLVDS	-	-	150	ns

Note9 : Please refer to "3.3.2 Input Clock and Data Timing Diagram"

3.3.2. Input Clock and Data Timing Diagram

LVDS input timing:


LVDS input eye diagram

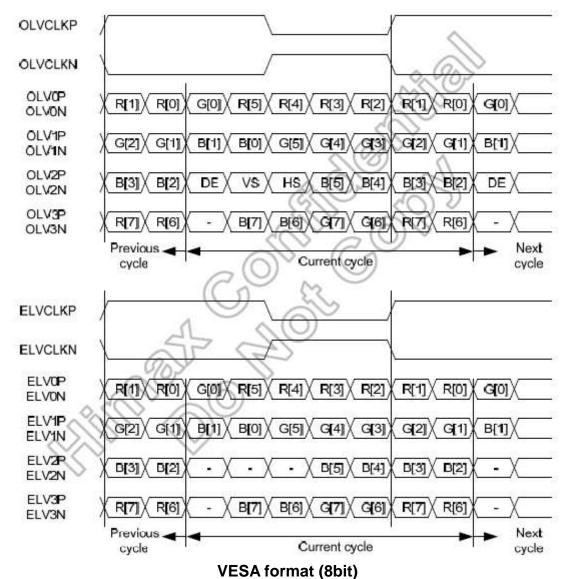

3.3.3. DC Electrical Characteristics

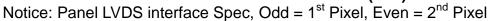
Parameter	Symbol	Spec.			Unit	Remark	
Farameter	Symbol	Min.	Тур.	Max.	Onit	Keinark	
Differential input high Threshold voltage	Vth	-	-	+0.1	v	Vcm=1.2V	
Differential input low Threshold voltage	Vtl	-0.1	-	-	v	VCM=1.2V	
Differential input common Mode voltage	Vcm	1	1.2	1.7- V _{id} /2	v	-	
Differential input voltage	Vid	0.2	-	0.6	V	-	
Differential input leakage Current	Vleak	-10	-	+10	μA	-	

Single-ended: LVCLKP(R), LVCLKN(R), LVD[3:0]P(R), LVD[3:0]N(R)

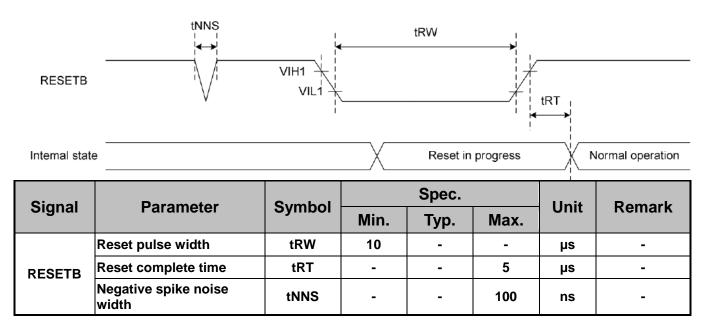
Differential: LVCLKP(R)-LVCLKN(R), LVD[3:0]P(R)-LVD[3:0]N(R)

3.3.4. Timing


Parameter	Symbol	19 (Tw	Unit		
		Min.	Тур.	Max.	
CLK frequency	F _{CLK}	-	44.1	-	MHz
Horizontal valid data	t _{hd}		960		
1 Horizontal Line	th	984	992	1005	DCLK
Vertical valid data	t _{vd}		720		Н
1 Vertical field	t _v	730	741	753	Н
Frame rate	FR	59.4	60	60.6	Hz


Note: DE mode only.

3.3.5. Data Input Format


Panel LVDS format follow standard LVDS format:

3.3.6. Reset timing

4. Optical Specifications

liom	Symbol Condition		Values			Unit	Remark
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Reindik
	θ∟	Φ=180°(9 o'clock)		85	-		
Viewing angle	θ _R	Φ=0°(3 o'clock)		85	-	degree	Note 1
(CR≥ 10)	θτ	Φ=90°(12 o'clock)		85	-		NOLE I
	θΒ	Φ=270°(6 o'clock)		85	-		
Response time	T _{ON}		-	15	20	msec	Note 2,3
Response time	T _{OFF}		-	10	15	msec	
Contrast ratio	CR	Normal θ=Φ=0°	(700)	1000	-	-	Note 2,4
	Wx		(0.273)	(0.313)	(0.353)	-	Note 2,5,6
	W _Y		(0.289)	(0.329)	(0.369)	-	- Note 2,3,0
	Rx		(0.602)	(0.642)	(0.682)		
Color chromaticity	Ry		(0.254)	(0.294)	(0.334)		
Color chromaticity	Gx		(0.234)	(0.274)	(0.314)		
	Gy		(0.635)	(0.675)	(0.715)		
	Bx		(0.112)	(0.152)	(0.192)		
	Ву		(0.028)	(0.068)	(0.108)		
NTSC			80	85	90	%	Note 2
Gamma			1.9	2.2	2.5		Note 2
Luminance	L		(600)	750	-	cd/m²	Note 2,6
Luminance uniformity	Yu		75	80	-	%	Note 2,7

Test Conditions:

1. I_L = 220mA(Backlight current), the ambient temperature is 25°C.

2. The test systems refer to Note 2.

Note 1: Definition of viewing angle range.

The view angel for Θ =85° is measured by BM-5A.

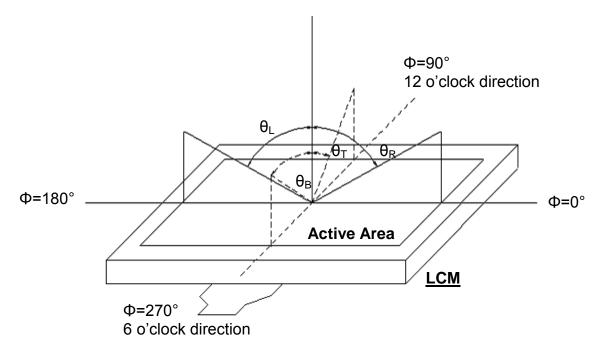
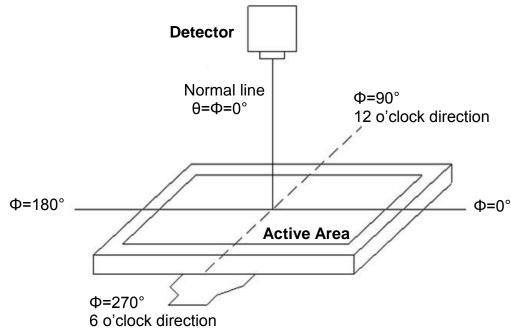



Fig. 4-1 Definition of viewing angle

Note 2: Definition of optical measurement system.

The backlight has been light on for 30 minutes then measured the optical properties at the center point of the LCD screen in dark room. The optical performance are measured by DMS.

Fig. 4-2 Optical measurement system setup

Note 3: Definition of response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 10% to 90%, and fall time (Toff) is the time between photo detector output intensity changed from 90% to 10%.

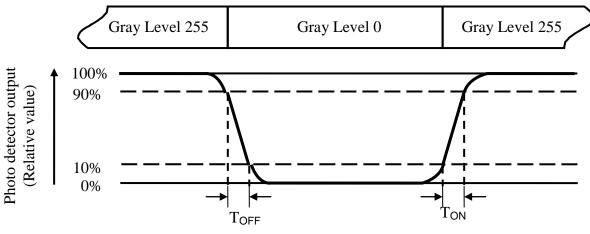


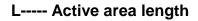
Fig. 4-3 Definition of response time

Note 4: Definition of contrast ratio

 $Contrastratio(CR) = \frac{Luminancemeasured when LCD on the "White" state}{Luminancemeasured when LCD on the "Black" state}$

Note 5: Definition of color chromaticity (CIE1931)

Color coordinates measured at center point of LCD.


Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is IL=(220mA).

Note 7: Definition of luminance uniformity

Active area is divided into 9 measuring areas.

LuminanceUniformity(Yu) =
$$\frac{B_{min}}{B_{max}}$$

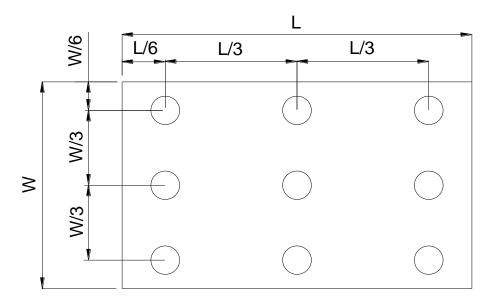


Fig. 4-4 Definition of measuring points

5. Reliability Test Items

Item	Test Conditions	Remark	
High Temperature Storage Test	Ta = 90ºC, 504 hours		
Low Temperature Storage Test	Ta=-40ºC, 504 hours		
High Temperature Operation Test	Ts=85ºC, 504 hours	(1) (2) (4) (5)	
Low Temperature Operation Test	Ta=-30⁰C, 504 hours		
High Temperature & High Humidity Operation Test	Ta=60ºC, RH 90%, 504 hours		
Thermal Shock	(Ta=-30℃ 30min)→(Ts=85℃ 30min)]/cycle, 100cycles		
ESD Test (Operation)	Condition 1 : C = 150pF, R = 330_ Contact Discharge, ± 8KV Condition 2 : C = 150pF, R = 330_, Air Discharge, ± 15KV	(5)	
Mechanical Shock	100G, 6ms, half sine wave, 3 times for each direction of $\pm X$, $\pm Y$, $\pm Z$	(1)(3)	
Mechanical Vibration	Frequency: 10 ~55~10Hz;Sweep Mode: Log Sweep Sweep time: 1Oct/min; Acceleration: 1.5G;Test time:2 hr for each direction of X, Y, Z.	(1)(3)	
Packaging Vibration Test	1.47Grms X, Y, Z three axes (30min /axis) [Spectrum :		
r ackaging vibration rest	5Hz(0.015G2/Hz),100Hz(0.015G2/Hz),200Hz(0.0037G2/Hz)]		
	1corner, 3edges, 6faces (1 time/direction) <follow height="" ista(1a)=""></follow>		
	0kg≦W<10kg ∶ 76cm,		
Packaging Drop Test	10kg≦W<19kg ∶ 61cm,		
	19kg≦W <28kg ∶ 46cm,		
	28kg≦W<45kg ∶ 31cm,		
	45kg≦W≦68kg : 20cm		

Note (1) Ta is ambient temperature, Ts is panel surface temperature.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour.

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Note (4) A certain level of Mura (non-uniformity) of dark / black image will happen several days after high temperature testing (H.T.T.). There is a slowly part recovery over a long time (several months).Such a long exposure time like in H.T.T. will normally not happen in a real application. Therefore the test H.T.T. was introduced to simulate cycles with normal conditions in-between but with the same total exposure time what show a significant reduced Mura.

The root cause is related to tension generated due to different amount of shrinking in the stack of layers in the polarizer sheet.

The effect is more significant on larger displays like this size. An investigation into alternative polarizer material showed that there is no better alternative currently available.

Note (5) Criteria Class B: Some performance degradation allowed. No data loss. Self-recoverable. No hardware failures.

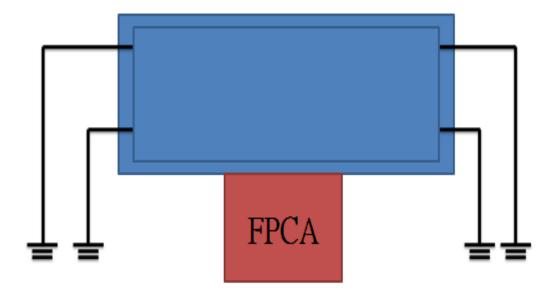


Fig. 5-1 Definition of grounding method

6. General Precautions 6.1. Safety

Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or

clothes, wash it off immediately by using soap and water.

6.2. Handling

1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface.

2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages.

3. To avoid contamination on the display surface, do not touch the module surface with bare hands.

4. Keep a space so that the LCD panels do not touch other components.

5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages.

6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs.

7. Do not leave module in direct sunlight to avoid malfunction of the ICs.

6.3. Static Electricity

1. Be sure to ground module before turning on power or operating module.

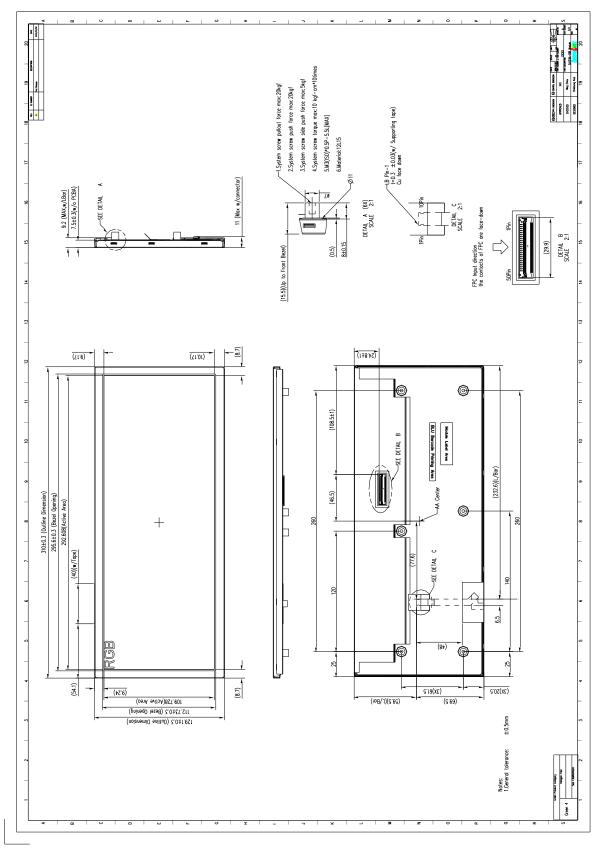
2. Do not apply voltage which exceeds the absolute maximum rating value.

6.4. Storage

1. Store the module in a dark room where must keep at 25±10 $^\circ\!\!\mathbb{C}$ and 65%RH or less.

2. Do not store the module in surroundings containing organic solvent or corrosive gas.

3. Store the module in an anti-electrostatic container or bag.


6.5. Cleaning

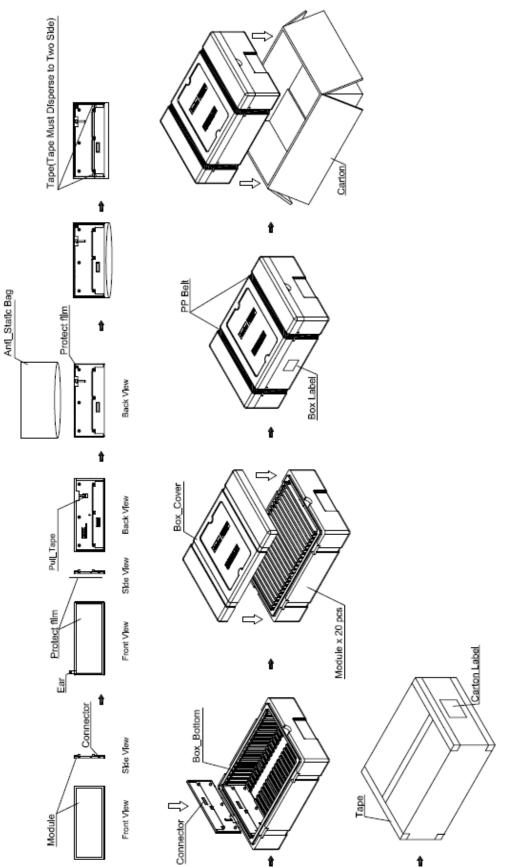
1. Do not wipe the polarizer with dry cloth. It might cause scratch.

2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer.

7. Mechanical Drawing

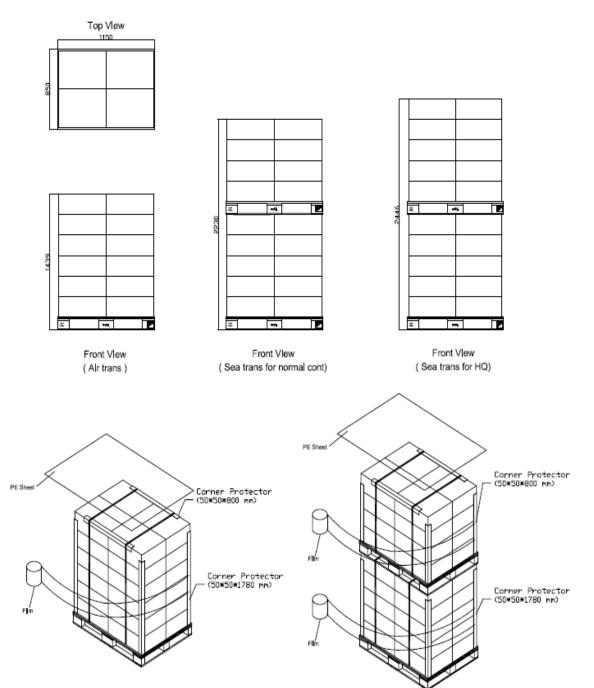
8. Packing Drawing

8.1 Packaging Material Table


No.	ltem	Model (Material)	Dimensions(mm)	Unit Weight (kg)	Quantity	Remark
1	LCM Module	Model Name	310(W) X 129(H) X 7.5(D) mm	0.53	20	
2	EPO Box	EPO	542 x 382 x 182mm	0.61	1	
3	A/S Bag	PE	340 x 183 x 0.04mm	0.006	20	
4	Carton	Corrugated Paper	566 x 406 x 216mm	1.014	1	
5	Total Weight	12.34 kg				

8.2 Packaging Quantity

Total LCM quantity in Carton: 20pcs



8.3 Packaging Drawing

8.4 Shipping Drawing

